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Dynamical self-affinity of damage spreading in surface growth models
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The dynamical anisotropic scaling properties of the surface growth models are restudied by use of the
damage spreading concept. For that the vertical damage spreading ditaofce damaged column as well as
the lateral damage spreading distanteis introduced. The scalindnsaze for El(dH 1), D=(d) and
DLE<E> are suggested. The critical property of the probability distribu@d; ,t) for the survived damages
is also suggested. The suggested scaling relations are tested by simulating various growth models with sub-
strate dimensiord=1. From these results it can be concluded that the critical property or dynamical self-
affinity of a surface growth model can also be determined by investigating the damage spreading.

PACS numbd(s): 05.40—~a, 05.70.Ln, 68.35.Fx, 81.10.A]

[. INTRODUCTION pletely. In this paper we want to apply DS concepts to ki-
netic surface roughenings on a complete theoretical basis for
The application of the damage spread{ixfs) concept to the dynamical self-affinity. In order to do so a vertical dam-
dynamical cooperative systems has been found to be a povage spreading distanc¢er a DS distance perpendicular to the
erful tool for the investigation of the dynamical properties of substratg as well as a lateral distance must be introduced.
the given systemgl]. For DSs two identical systems, which The dynamical scaling relation of DSs which corresponds to
are initially the same, except for a small subset of the systentq. (1) can be established by use of the two kinds of dis-
are simulated by the same random numbers and it is oldances.
served how damages are spreading during the dynamical
evolution by a detailed comparison of the two systems. The ||. SCALING RELATIONS FOR DAMAGE SPREADING
method has been successfully applied to the analyses of
some dynamical systems such as biological sys{@hsel- Now we explain the theoretical basis of our analysis for
lular automata[3], kinetic Ising models4—10], and spin the DSs in the kinetic surface roughening phenomena. Con-
glass systemfl1]. Recently a study12] has applied the DS sider two systems A and B of a growth. In system A growth
concept to the kinetic surface roughening phenomena. Thigegins with the flat surface, i.ér*(r,0)=0 for anyr on the
study has tried to relate initial damage spreading to the dysubstrate. In contrast growth in system B begins with
namical correlation of surface roughening phenomena.  h®(r,0)=0 except at one pointy, whereh®(r,,0)=1. Here
The dynamical interface roughenings in the various{h”(r,t)} [{h®(r.t)}] means the surface height of system A
growth modelg[13—21 have extensively been studied, be- [B] att. The surfaces in A and B are allowed to grow under
cause of the practical importance for material growths andhe same growth rule and under the same sequence of ran-
the theoretical interest in the dynamical self-affine scalingdom numbers. A damaged colurfor a damaged sijett is
property. The dynamical self-affine properties have mainlydefined byr at whichh®(r,t) #h®(r,t). If a column atr 4 is
been analyzed by the surface widhk(L,t), which is defined ~damaged, then a lateral damage spreading distdpead a
by the root-mean-square fluctuation of the surface height. Iivertical damage spreading distande of the column are
many case$13—21 W(L,t) has been known to satisfy the defined by
scalingAnsatz
d=|rg—rol, d,=[hB(rg,t)—(h®)|, @)
W(L,t)=L%f(t/L?), (1)
where(h®) means the average surface height in system B. If
where f(x)=x’(8=alz) for x<1 and f(x)=const forx  the periodic boundary condition is imposed, thesn must
>1. HereL is the linear size of the substrate. It was found insatisfy dj<L/2. To study conventional dynamical systems
Ref.[12] thatD(t) =tY* whent<L? for the growth models  such as Ising model through DS concepts, the main quantity
with a<1. HereD(t) was a lateral DS distand®er a DS  or order parameter to focus on is the fraction of damaged
distance parallel to the substrateThis result physically sites or the Hamming distan¢B]. In contrast we inevitably
means thaD, can be related to the dynamical correlation need the geometricétea) distances to study kinetic surface
length &, since¢é=t*? whent<L? [13]. Although the study roughening phenomena. Furthermore, to understand the in-
based orDy(t) [12] partly explains the correlation dynam- trinsic anisotropy or the self-affinity between the direction
ics, it cannot explain the dynamic self-affinityr anisotropic  parallel to the substrate and the direction vertical to the sub-
scaling property [13] of the roughening phenomena com- strate, lateral and vertical distances must simultaneously be
considered.
To study the dynamical scaling property of surfaces by
*Email address: ykim@nms.kyunghee.ac.kr damage spreading the main relation to focus on is the rela-

1063-651X/2000/6@3)/33766)/$15.00 PRE 62 3376 ©2000 The American Physical Society



PRE 62 DYNAMICAL SELF-AFFINITY OF DAMAGE SPREADING ... 3377

tion betweend, andd or the functional(dn,t). Here
d, (dj,t) means the average df over the surviving dam-
ages which exist only at the lateral distange (or atrg
=ro+dy). The functiond, (d;,t) should have all the de- N&xtwe want to suggest a reasonable scafingatzfor D,
tailed information on damage spreading in the surfacénd P(d).t). If the lateral damage spreading faithfully ex-
growth. We now want to suggest a reasonable scalimgatz ~ Plains the lateral correlation dynamics of the surface growth

=¥ ; henomenaD(L,t) should behave critically in the same
for d, (dy,t). In the early stage of growth it can be expectedP 1A= .
that éf’;\nqag)es should a);pee?r only? at the columns rtgﬁr way as the dynamical correlation lengfti13] and the plau-

the spreading velocity is finite. So the touch titagd)) at sible scaling relation foD;(L,t) can be written as

. L/i2__
DL:<dL>:J0 dL(d”,t)P(dH,t)ddH. (7)

which a damage first appears on the columrdatcan be tY2 if 1 <t<|?
defined. Then fot<t;(d|) the damages have not spread to DH(L,t):LfH(L/tl’Z): ) , ’ (8)
the column atd)|, yet. Fort>t;(d) the damages have al- L ift>L~

ready spread over the column df. If DS faithfully de-

scribes the dynamical correlation of the surface growth, the ) : 2
the damage has spread over the columndat£(t) [12]. also suggested in Rdf12]. The relation fot>L* in Eq. (8)

Here ¢(t) means the correlation length of the surface rough-iS new and PhySica”y means th&.lt damagzes spread throgghout
ening with £(t)=t? [13]. It is thus reasonable to se(d)) the sample in the saturation regirfme t>L7%), so that DSs in

ﬁ\ similar relation to the case for<4t<L? in Eq. (8) was

as the saturati_on regime can show the self-affinity of the surface
growth asd, (d,t=»)=L% and D, (L,t=c)=L" From
ti(dH)zcdﬁ , 3 Eq. (6) and Eq.(8) one can expect that the scaling relation
wherec is a proportional constant. The reasonable scaling P(dj ,t)=d|]1fp(d||/tl’z) 9

Ansatzfora(du ,t) is then 1
holds, where ,(0)=const orP(d ,t> Lz)de . From Eqgs.

=0 if t—cdﬁ<0, (4), (7), and(9) we also get
d,(dy,t) =A(t—cd)? if 1<t—cdi<l? (4 t8if 1<t<l?
=L if t—cdi>L" DAL=V 0 & >12 (10
If t—cdﬁ<0, there is no damage in the columndgtand the To confirm the suggested scalibgsaze(4), (8), (9), and

first case in Eq(4) is justified. If 1<t—cdfi<L? atleasta (10) we study DSs in the various surface growth models by
damage has already appeared in the columdjaand the  simulations. Surface growth models which satisfy the dy-
vertical damage spreading should be in the initial stage. lhamical scaling law(1) can be categorized into two large
the damage spreading in this regime can describe the earljasses. One class consists of normal roughening models in
stage of the growth, i.e., the stage whef(L,t) satisfies which the exponenir satisfiesa<1. The famous models
W(L,t)=t# [13], then the second case of Hd) is justified.  which belong to this class are the Family mod&#], re-
The fact that the time dependence is not ltkebut like (t stricted solid-on-solidRSOS model [19], etc. The other
—cdﬁ)ﬁ reflects the delayed start of vertical DS in the col-class consists of the superroughening models in which
umn atd;#0 by the amount ofi(zcdﬁ) compared to that satisfiesa>1. The famous models which belong to the sec-
atdy=0. If t—cdf>L? then all growth is in the saturation ond class are the Das Sarma—Tamborei¥a model[17],
regime of Eq(1) [13]. The vertical DSs at all the columns in large curvaturéLC) model[20], etc.

this regime should be saturated and thus the third case in Eq.

(4) is also justified. The dynamical scaling form which sum- ll. SIMULATION RESULTS FOR NORMAL
marizes all the cases in E(}) should be ROUGHENING MODELS
_ t—cdf Our simulation is done in the substrate dimensibal.
d, =L, . (5) In this section we explain the simulation data for DSs in the
L the class of the normal roughening models. Here we mainly

report the data of DSs in the RSOS model. However, we
have confirmed that the main results hold nearly in the same
way for the other models such as Family model.

One more quantity which we consider important for the
analysis of DS is the probability distribution of the survived
damages ad||, P(d) ,t). Of courseP(d| ,t)dd is the prob- ) —
ability to find a survived damage in the interva(d Figure 1 sho!vs the data of tzhe RSOS modeldp(d”,t)
+dd). If one knowsP(d,|,t), the average lateral DS dis- versust whenL =1024 andt<<L*. First note the data in the

tanceD|| and average vertical DS distanBg can be ob- inset of Fig. 1, which is fod, (d;=8). The behavior of
tained from data in the inset is common for differedt (d|,t)’s. The
s common behavior is as what follows. Fort;(d)) there is
no damage in the column dt . Aroundt;, damages begin
Dy={dip= fo dP(dy,tydd © to appeagrJ and furthermore Ft‘he initial trlansient 9gegimegwith
the spike-type data appears. After the initial transient regime
and around t;, the data follow the second case of E@),
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FIG. 1. Data for the time dependence it differentds in FIG. 2. The collapse of the data in Fig. 1 onto a single curve
the RSOS model. The inset is the datadoft dH=8 with initial - 'B o . g '
spike-type data. The data in the main part of the figure are showfl: =AX" with x=t—cdj.
with omitting the initial spike-type data. The solid curves represent
d(d),t)=A(t—cdf)# with z=1.53 ands=0.32. values of the exponenta, B, and z agree well with the
exactly known values.

Next we want to discuss the simulation results of the

a(du,t):A(t—cdﬁ)ﬂ, well. The initial transient regime . .
should be from the unmatured correlation between the justlfzSOS model foP(d; 1) and Dy (L,t). The inset of Fig. 4

born damades aroundl, and the already existing damades shows the data foP(d) ,t) at several different’s. The data
ges ) . Ady 9 9€S- have been taken by averaging over 3000 independent runs
The data for differend|’s in the main part of Fig. 1 are

. . L . using the substrate with=1024. As one can see in Fig. 4,
presented without showing the data of the initial transient

regime around;(d;) for simplicity. The curves shown in
Fig. 1 are obtained in the following way. First, using the data

- - Wil O d=0
for d, (d=0,t) and the relationd, (d,=01)=At’, we have  ,| | g des
obtainedA=0.43 andB8=0.32, where the exact value @f A d=16
of the RSOS model is 1/3. Next from the data fg(d,) for O d=20

variousd's and the reIatiorti(dH)zcdﬁ, c=0.50, andz
=1.53 have been obtained. Using these independently ob
tained values forB, z, A, and ¢ and the function
a(du Ry :A(t—cdﬁ)ﬁ the curves in Fig. 1 are drawn. These ;§:
curves fit the data for the varioud, 's well except for the |

transient regime. In Fig. 2 the dataaf for variousd,’s are
shown to collapse onto a single curve using the function
d, (d ,t)=Ax? with x=t—cdﬁ. Of course the data of the
initial transient regimes are not included in Fig. 2. From
Figs. 1 and 2 we can conclude that DS in the RSOS mode
satisfies the first and second cases of Bjquite well. Fig-

ure 3 shows the data af, (d|,t=) for variousd|’s. The
substrate sizes used dre=128,256,512,1024. The data for

the variousd,’s with the samel. have the same value. The 5 5 .
data in Fig. 3 have been fitted to the third case of &, L

d, (dj,t=)=L*“, and the obtained is «=0.51, which is B
very close to the exact value= 1/2 of the RSOS model. The FIG. 3. In-In plot ofd in the saturation regimgr t=o) against
result in Fig. 3 shows that DS in the RSOS model satisfiet for the RSOS model. The substrate sizes used hre
the third case of Eq4) well. Thus from the results in Figs. =128,256,512,1024. Note that the data for differefit have the
1, 2, and 3 DS in the RSOS model satisfies the dynamicalame value. The solid line represerﬁ(sdu Jt=0)=L* with «
self-affinity described by Eq4) quite well and the obtained =0.51.

lndl
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. . , FIG. 5. In-In plot of D|(L,t) againstL in the saturation regime
FIG. 4. The data in the RSOS model fecd;.t) "?‘t varioust's . (or whent=x) for the RSOS model. The substrate sizes used are
are shown to collapse onto a single curve using the functlor]_:128'256'512’1024_ The solid line represedtg(L,t=o)=L.
P(d,t)=dj lf_p(dllftllz) with z=3/2. Inset shows the data for tq jnset shows the In-In plot db|(L,t) versust for t<L? and
P(d) ;1) at varioust's. L=1024. The solid line in the inset represes(L,t)=t"* with
1/z=0.66.
the data forP(d,t) for varioust’s collapse well onto a

i i ; _q-1 /
single curve using the functiof(d),t)=dj *f5(d /t"*).  that in normal roughening models. From the datatfod))

Thg va}lue ofz used for the collapse diagram in Fig. 4 is 3/2, ¢, variousd;’s and the relatior’ni(dH):cdﬁ, the obtained:
which is the exactly known value for the RSOS model. From,11e in the DT model is anomalously small ©=0.0001.

the results in Fig. 4 it can be seen i) ,t) of the RSOS  1pg result means that the initial lateral DS occurs more rap-
model satisfies the scaling la@®@) well. We havg also con- idly than expectedor ti(du)<dﬁ]- We have also found
firmed that P(d, ,t) for other normal roughening models anomalously rapid DS in the LC model. Similar anomalous

such as the Family model satisfies H) well. Figure 5 behavior in the LC model was found in a somewhat different
shows the data of the RSOS model y(L,t). The data in g o0 i Ref[12]. We thus believe that the anomalously

the inset of Fig. 5 have been obtained from the simulation forrapid lateral spreading of the initial damages is common in

t<L"on the ;ubstrgte W'th:.1024' From the l'DH"nZt plot the class of superroughening models. Even though there
for the _data n the Inset of Fig. 5 and E@) for t=<L% 1z should exist anomalously rapid DS initially, DS in the DT
=0.66 is obtained. This result is consistent with B) for  odel has been confirmed to satisfy the dynamical self-
t<L? because the exact valueoih the RSOS model is 3/2. affinity or Eq. (4). Figure 6 shows that the data df for

The data in the main part of Fig. 5 are those By whent nity dv q- h gT del coll h i

>LZ. The substrate sizes used are 128,256,512,1024. The Varousdjs in the model collapse rather well into a
slope of the IDj—InL plot in Fig. 5 is nearly the same as 1 smgIZe curve using the functiod, (d ) =Ax? with x=t

and this result is also consistent with =L for t>L% The = —¢dj. The usezd data in Fig. 6 are of course those in the
simulation results of the RSOS model fBy both in the regime i<t—cdj<L" The obtaineds value from Fig. 6 is
inset of Fig. 5 and in the main part of Fig. 5 satisfy £g.  0.37, which is very close to the exactly known valge
rather well. We have also confirmed tHaj(L,t) for other j3/8 of the DT model. The inset of Fig. 6 shows the data of
normal roughening models such as the Family model satide(dH ,t=c0) for variousd's in the DT model. The sub-
fies Eq.(8) well. We have also confirmed that EG.0) holds  strate sizes used ate=32,64,128,256. The data in the inset
for normal roughening models by simulations. The validity for the variousd|’s with the same. have the same value as
of Eq. (10) can easily be seen from the data in Figs. 1 and 3in the RSOS model. The data in the inset have also been

fitted toa(du ,t=0)=L* and the obtained value is 1.53,
which is very close to the exact value=3/2 of DT model.
IV. SIMULATION RESULTS FOR SUPERROUGHENING . . .
MODELS From Fig. 6 it can also be concluded that DS in the DT
model satisfies the dynamical self-affinities described by Eq.
We next explain the simulation data for DSs in the class4) well and the obtained values of and 8 from Eq. (4)

of the superroughening models. Here we mainly report theagree well with the known values of the corresponding

data of DSs in DT model. It is found that the velocity of model. We have also confirmed that DS in other superrough-

initial lateral DS in the DT model is very rapid compared to ening models such as the LC model satisfies Egwell.
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consistent with Eq(9) whent>L* From the simulation re-
sults of superroughening models fé(d ,t) we can expect
thatD) whent<L? does not satisfy E¢8) whent<L?, but
D), for t>L* satisfiesD)(L,t—)=L well. We have con-
firmed D(L,t—w)=L for superroughening models by
simulations.

V. SUMMARY AND DISCUSSION

We have shown that DS in surface growth models satis-
fies the dynamical self-affinitjEq. (4)] quite well as can be
seen from Figs. 1, 2, 3, and 6. From this result it has also
been concluded that one can obtain the exponeni8, and
z by using the simple scaling relatiord, (dj=0})
=L*f, (t/L?), i.e., the relation for the vertical DS distance of
the column at which the initial damage is assigned.

For normal roughening models such as the RSOS model
and Family modeP(d);,t) andD)(L,t) satisfy the scaling
R R - L Ansaze (9) and(8) quite well. This result physically means
0 50 100 150 200 that we can understand the critical behavior of the correlation

t-cd’ length &(L,t) of normal roughening models directly by
' studying P(dy;,t) and Dj(L,t). In contrast damages in su-

FIG. 6. The collapse of the data faﬂ(d” t) in the DT model perroughening models initially spread with anomalously

onto a single curvel, =Ax? with x=t—cd{ whenx<L?* The 8 rapid velocity andP(d|,t) andD) (L ,t) do not follow Egs.

andz values used are 0.37 and 4.1, respectively. The inset shows) and (8) initially (or for t<L?). This result may come

the In-In plot ofd in the saturation regiméor t=x) versusL for from the_ fact that in the LC a}nd DT mOdel.S the growth
the DT model. The substrate sizes usedlae32,64,128,256. The mechanisms depend on the height configurations of the next
o nearest neighbors of the randomly chosen column as well as
the nearest neighbors of it. However, in both normal rough-

Next t o di the simulati its of ening models and superroughening models we have con-
ext we want to discuss the simulation results of supers -1 andDj(L,t)~L hold

rougening models foP(d),t) and D)(L,t). In the super- firmed that the relationB(d, ’t):dﬁ) This result physically

roughening model, especially in the DT and LC models, itlrgetz(ralss ?ﬁll:;[aggrrhfgelrsn?rrefor:gi‘lr_ozen in some local area but
has been found that the data f(d) ,t) whent<L? do not 9

. . spread throughout the sample in the saturation regime. This
Zﬁtcl)?nzllggél(g)r:\v elg (L%sarzsgltrggginbe ir?xt%eec;[ﬁgiglrosg tzeo?ample-size spreading guarantees that the self-affine proper-
y rap ge spre 9 ; 9€ %es of the surface roughenings can also be studied by DS

growth, which we have mentioned previously. Instead

P(d,t) has been found to satisfy P(d|,t) concepts.
=dj “fo(d) /t"?) with 0<k<1 whent<L% This anoma-

lous behavior in the DT and LC models may come from the

fact that the damaged sites do not form one connected clus- This work was supported in part by the Korean Science
ter, but form several different clusteis2]. In contrast it has and Engineering FoundatiofGrant No. 98-0702-05-01)3
been confirmed thaP(d, ,t):dﬁl when t>L% which is  and by the Brain Korea 21 project.

solid line in the inset represer&du ,t=0)=L% with «=1.53.
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